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Automated Cartographic Feature Attribution Using Panchromatic and 
Hyperspectral Imagery 

DARPA/APGD Yearly Report 1998-1999 

1. Introduction 

This report summarizes the primary accomplishments made during the second year of the Defense Advanced 
Research Projects Agency (DARPA) Automated Population of Geographic Databases (APGD) program. 

Surface material information is of interest to us both for cartographic feature extraction (CFE), to generate 
feature hypotheses, or to refine features generated by other CFE systems, and for visual simulation to select 
realistic visual textures. Prior to this contract, late in 1995. we organized a hyperspectral data acquisition 
using the Naval Research Laboratory's (NRL) Hyperspectral Digital Imagery Collection Experiment sensor 
(HYDICE) system over Fort Hood, TX. This acquisition resulted in hyperspectral data with a nominal 2-m 
ground sample distance collected with 210 spectral samples per pixel. These data formed the basis of our 
program of research under APGD. 

Sections 2 and 3 summarize the work in acquiring and registering the HYDICE data. Section 4 describes 
experiments in classifying the HYDICE data using standard maximum-likelihood techniques, while 
Section 5, explores the development and results of the new spectral angle mapper. 

While we can generate very detailed surface material maps, these are sometimes too detailed for 
simulation database construction; Section 6 covers the work we have begun on aggregating the surface 
material maps to reduce the number of polygons required without degrading classification accuracy. 

Fusion has been the main goal of this work; in Section 7. we describe fusion experiments involving 
various combinations of feature detectors and combination modalities. 

2. HYDICE Data Acquisition 

The collection of data at Fort Hood included both airborne imagery and ground truth measurements. The 
image acquisition included hyperspectral imagery collected by the HYDICE sensor system and natural 
color film shot by a KS-87 frame reconnaissance camera. The spectral range of the HYDICE sensor extends 
from the visible to the short wave infrared (400-2500 nm) regions, divided into 210 channels with nominal 
10-nm bandwidths. 

Nine HYDICE flightlines, each 640 m wide (cross-track) and 12.6-km long (along-track), were flown 
over Fort Hood's motor pool, barracks, and main complex areas from an altitude of approximately 4,000 m 
above ground level. After each flightline, the HYDICE sensor was flown over and imaged a six-step (2, 4, 
8, 16, 32 and 64 percent) gray-scale panel, providing in-scene radiometric calibration measurements for 
each flightline. Prior to the start of the HYDICE flight collection, several ground spectral measurements 
were made for each gray level panel in an attempt to characterize its mean spectral reflectance curve. A 
more detailed description of the HYDICE sensor system. Fort Hood image acquisition, and ground truthing 
activities can be found in [Ford et til.. 1997]. 

3. HYDICE Block Adjustment 

Data fusion requires accurate registration between all data types. Our approach to HYDICE registration, 
based on block adjustment with straight line constraints, has been discussed previously [McGlone, 1998; 
Ford et ed., 1997]. Current experimentation has focused on optimizing the accuracy of the block adjustment 
and characteristizing its results. This section briefly describes experiments in comparing platform models, 
the effects of varying tie point densities, and the effectiveness of including straight line constraints in the 
solution. 



(a) 4_3. 

(b) 5_3. 

Figure 1: HYDICE test images with tie points (diamonds), check points (crosses), and constrained lines. 

3.1 Mathematical model 

The mathematical model has several different parts; the sensor model, which describes the imaging 
geometry of the linear pushbroom sensor, the platform model, a representation of the aircraft position 
and orientation with respect to time, and the block adjustment incorporating the geometric (straight line) 
constraints. In this case the sensor model is based on the collinearity equations, modified to reflect the fact 
that each line of a pushbroom image is an independent, one-dimensional image [McGlone, 1998]. 

The platform model describes the behavior of the orientation parameters as a function of time or line 
number. Two different models were studied in this work, the polynomial model and the interpolative model. 
In the polynomial platform model, the value of each orientation parameter at a particular line is written as 
a polynomial function of line number. The interpolative model, on the other hand, stores the orientation 
parameters of reference lines at regular intervals, then calculates the parameters of intervening image lines 
by polynomial interpolation. 

The bundle block adjustment is performed using an object-oriented photogrammetry package [McGlone, 
1995] which allows the use of images with different geometries and the rigorous incorporation of straight 
line constraints. Straight lines in the scene are measured in each image, in order to provide additional 
strength to the solution. 

3.2 Experimental plan 

For the experiments described in this report, a small sub-block of the available data is being used. This 
includes two sidelapping 1280-line HYDICE images, four KS-87 images (1.0 meter GSD), and four 
RADIUS vertical mapping images (0.3 meter GSD). Tie points between the HYDICE images and the frame 
images were established by manual measurement, with all tie points being measured on at least two frame 
images. Straight lines also were measured manually on at least two frame images. The two HYDICE 
images used are shown in Figure 1. Tie points for the heavy density case (described below) are shown as 
diamonds while check points are shown as crosses. The straight lines used in the solution also are shown. 



Three levels of tie point density were established, as shown in 
Table 1. The same 37 check points were used for each experiment. 
Check points that appear on both HYDICE images are counted twice, 
since they are treated independently. All measured object-space 
straight lines were horizontal and were constrained to be horizontal. 

Table 1: Point test cases. 

3.3    Results and evaluation 

Evaluation was done by comparing the calculated 
world X,Y coordinates of the check points against 
the values using the frame images. No evaluation 
was done on the Z coordinate, since the HYDICE 
sensor has a very narrow field of view (9 degrees) and 
therefore elevation recovery is weak. For this reason, 
the Z coordinates of the check points were held fixed 
in the solution, and points that appeared on both 
HYDICE images were evaluated as two separate 
points. In order to gain a better understanding of 
the characteristics of the solution, three different 
statistics were calculated: the median absolute 
deviation, the root-mean-square (RMS) deviation, 
and the maximum absolute deviation. Since the RMS 
statistic is extremely sensitive to large outliers, we 
rely mostly on the median statistics in analyzing the 
results. 

The results of the evaluation runs are given in 
Figure 2.  The interpolative model solution for 
the sparse point case (3) with no lines and 32-line 
spacing did not converge, due to weak geometry with 
the reduced number of points, so no results are given. 

Polynomial vs interpolative platform models: 
For this data set, the polynomial model generally 
performed better than the interpolative model without 

Case Pts on 
4_3 

Pts on 
5_3 

Pts on 
both 

1 (heavy) 18 17 8 
2 (medium) 14 12 5 
3 (sparse) 6 6 3 

£ 24,00 

 Without straight line constraints 
    With straight line constraints 

<>     O Polynomial model 
D      D Interpolative model (64) 
+      -f- Interpolative model (32) 

-+    / 

Point test case 

Figure 2: Median absolute XY check point error, 
meters. 

lines, but not as well as the interpolative model with straight line constraints. The interpolative model 
without straight line constraints degrades more rapidly than the polynomial model as the amount of control 
is decreased (going from the heavy (1) to the sparse (3) point densities). 

Effectiveness of straight line constraints: The inclusion of straight line constraints in the interpolative 
model solutions improved the results in every case. While decreasing the number of tie points still increased 
check point error, the results from the runs with sparse points (case 3) are still better than the results for 
the heavy point density (case 1) without lines. This indicates that straight line constraints can be used both 
to improve a solution or as an effective substitute for additional tie points; however, adding the straight 
line constraints to the polynomial model solution made only negligible differences. It may be that the 
polynomial model, with its more limited flexibility, is unable to use the additional information from the line 
constraints. 

Reference line spacing: Decreasing the reference line spacing for the interpolative model will make 
the model more flexible by increasing its degrees of freedom. Given enough information to determine the 
model, it should recreate the platform motion more accurately and give better results. In this case, however, 
decreasing the reference line spacing generally degraded the results. The additional degrees of freedom 
were not adequately determined by the available information, and, in fact, the solution using the sparse 
point density without lines did not converge. 



Figure 3: RADT9 test area from flightline 4. Figure 4: Surface material classification in 
RADT9. 

4.    Automated Analysis of HYDICE imagery 

Table 2: Fine to coarse class grouping. 
Due to the volume of image data collected by the HYDICE 
hyperspectral sensor, these classification experiments used a 
reduced image dataset. To build on our previous experience 
with Daedalus (Airborne Thematic Mapper (ATM) imagery, 
we simulated Daedalus ATM imagery by averaging the 
HYDICE imagery bands contained within the solar reflective 
bandpasses of the Daedalus ATM scanner. 

Figure 3 shows one of the test areas used in the surface 
material classification experiments.   Manually-selected 
training sets for the materials listed in the "Fine Surface 
Material" column of Table 2 were compiled from an earlier 
section of Flightline 4. A Gaussian Maximum Likelihood 
(GML) classification was performed using the 10 simulated 
Daedalus ATM bands and selected training sets. Figure 4 
shows a surface material subsection map from the resulting 
classification, corresponding to the outlined region shown in 
Figure 3. 

The resulting surface material map was evaluated against manually-generated surface material reference 
data. Overall classification accuracy was 57.9 percent for RADT9. From Table 3, almost 20 percent of 
R ADT9'S classification error is associated with confusion among concrete, asphalt, soil, and gravel. Looking 
at Figure 4, there is breakup of the parking lot into asphalt and concrete sections probably influenced by 
surface weathering and vehicular traffic. Also, the barrack roofs fluctuate in surface material classification 
due to illumination changes influenced by the structure of the building roofs. 

We also are interested in coarse surface material classification, whereby the fine surface material classes 
are grouped into more general categories as listed in Table 2. This type of broad categorization is useful in 
identifying areas containing man-made or natural surface features. Table 4 displays the error matrices for 
the coarse classification for the test area, with a classification accuracy of 75.0 percent. The majority of the 
error (10.4 percent) involves man-made surface and bare earth confusions. 

Coarse 
Surface Material 

Fine 
Surface Material 

man-made surface asphalt 
concrete 

bare earth 
soil 
clay 

gravel 

vegetation 
grass 

deciduous tree 
coniferous tree 

water 
deep water 
turbid water 

man-made roofing 
new asphalt roofing 
old asphalt roofing 
sheet metal roofing 

shadow shadow 



5.    Classification Using Spectral Angle Mapping 
The spectral angle mapper (SAM) generates surface material classification maps by determining the spectral 
similarity between test and reference spectra. The reference end member spectra are extracted from the 
hyperspectral imagery and represent the spectral signature of each canonical 'class'. The mean spectral 
curve of an asphalt parking lot. for example, may be used as the reference end member spectra for the 
asphalt class. The similarity is determined by measuring the angle between each test spectra and the 
reference spectra in n-dimensional space, where n is the number of bands available in the imagery. Each test 
area is then assigned to the reference end member class to which it is most similar, i.e., to the reference class 
that has the smallest angle with the test spectra. Unlike the maximum likelihood classification discussed 
earlier, the spectral angle mapper uses the full spectral range (210 bands) of the HYDICE imagery, allowing 
more information to be used in the discrimination of surface materials. 

To evaluate the SAM, surface material classifications were generated with the same set of classes used in 
the maximum likelihood classifier discussed earlier, based on reference end member spectra created from 
the same training sets. The resulting surface material maps were evaluated against manually-generated 
surface material reference data for the two test areas. Classification accuracies for CHAFFlir, were 55.9 
percent while those for RADT5 were 55.1 percent. Visual inspection of the SAM classification results shown 
in Figure 5 reveal that classification of vegetation features appears to be quite good. Unlike the results 
seen in the surface material maps generated by the maximum likelihood classifier, building rooftops have 
relatively homogeneous classification results. One of the primary sources of confusion in both test areas 
is between the asphalt and gravel classes, most notably along roads. This confusion is most likely due to 
mixed gravel and asphalt pixels along the road shoulders. 

In order to more efficiently examine the results of surface material classification maps generated with the 
spectral angle mapper, the Digital Mapping Laboratory has created an interactive SAM tool. The program, 
li)l._SPANCii.i;, allows the user to manually delineate a series of reference end members regions within an 
image, or to specify a pre-selected set of reference spectral information. Surface material classification can 
then be generated on an area of the image delineated by the user. IDI._SPANGU; also enables the user to 
observe the spectral signature of reference end members, which can be useful in developing a reference set 
with adequate class separability. After the SAM 
classification is completed, the resultant surface 
material map is displayed.  After examining the 
classification results generated from the selected 
reference spectra set, the spectral angle calculation 
can be rerun with a different set of reference end 
member regions.   The ability to rapidly adjust 
reference end-member spectra and observe the 
resultant surface material classification maps is 
a useful tool for studying the effects of varying 
reference spectra on spectral angle classification. 

Table 3: RADT9 top 5 confusion pairs. 

Ground Truth 
Class 

Classification 
Class 

Number 
Confused 

Error 

concrete asphalt 7074 10.3% 
soil gravel 2756 4.0% 

grass soil 2233 3.3% 
asphalt soil 1703 2.5% 

concrete soil 1558 2.3% 
Total 15324 22.4% 

Table 4: RADT9 coarse classification error matrix. 

TEST 
REFERENCE 

man-made 
surface 

bare 
earth 

vegetation water man-made 
roofing 

shadow Row 
Total 

Commission 
Error 

man-made surface 26677 1973 1509 0 1477 608 32244 17.3 
bare earth 5129 7299 2444 0 254 58 15184 51.9 
vegetation 377 822 14666 0 117 149 16131 9.1 

water 0 0 0 0 0 0 0 * 

man-made roofing 671 182 285 0 1598 367 3103 48.5 
shadow 130 33 425 0 79 1153 1820 36.6 

Column Total 32984 10309 19329 0 3525 2335 68482 
Omission Error 17.3 51.9 9.1 * 48.5 36.6 Percent 

Overall Accuracy = 51393 / 68482 = 75.0% 



(a) HYDICE short wave infrared representation 
of test scene RADT5. 

(b) Surface material classification map for test 
scene RADT5. 

Figure 5: Surface material classification using the spectral angle mapper in test scene RADT5. 

6.    Surface Material Map Aggregation 
Current research in the Digital Mapping Laboratory focuses on providing surface material attribution for 
visualization databases. Problems arise, however, when attempting to use surface material classification 
maps generated from HYDICE imagery. Figure 6 shows three surface material classification maps available 
for use in visualization databases. The Interim Terrain Data (ITD), Figure 6a, provides broad areal coverage 
but has coarse spatial resolution. Surface material classification maps generated from HYDICE data 
with a 2-meter GSD, Figure 6b, show much more spatial detail. This detail, however, is often too high 
to feasibly use in a visualization database. Aggregation of the HYDICE derived surface material maps, 
Figure 6c, could provide more detailed surface material maps than ITD derived maps, without the high cost 
of non-aggregated HYDICE material maps. 

In order to more conveniently work with the raster format surface material maps, they were converted 
to a polygonal format. Aggregation of the surface material classification maps was then conducted by first 
removing all 'tree' regions from the classification map. A separate file was created with locations of these 
tree regions for later use in visualization database generation. Following removal of the tree polygons, all 
classification regions within the image were examined to see if they fell below a specified area threshold. 
If the regions were small enough, they were merged into surrounding polygons. The selected regions were 
then merged with the neighboring region that had the greatest shared perimeter with that region. 

Figure 7 shows the result of several aggregation tests on the CHAFFEE test scene. The classification map 
used in these studies was generated with a maximum likelihood classifier. The experiment was completed 
using minimum area thresholds of both 120 m2, Figure 7b, and 800 m2, Figure 7c. Prior to aggregation, the 
CHAFFEE surface material classification map contained 5,431 polygonal regions. Aggregation of all regions 
below 120 m2 reduced the polygon count to 200, while aggregation of all regions below 800 m2 trimmed 
the polygon count to 33. A reduction of the polygon count within the surface material classification map, 
while maintaining general classification accuracy, allows more efficient surface material attribution during 
the generation of visualization databases. 

An example of surface material attribution of a visualization database with an aggregated surface 
material map can be seen in Figure 8. The tree population in this example was generated by using point 



(b) HYDICE surface material 
map (2-meter GSD). 

(a) ITD surface material map. 

Figure 6: Surface material classification maps over Fort Hood, TX. 

(c) Aggregated HYDICE surface 
material map (10,000 nr 
minimum area). 

locations from the trees removed during aggregation. As the figure shows, an aggregated surface material 
classification map can be used for attribution of the surface material types in a visualization database 
without requiring an infeasible number of polygons to represent the material attributes. 

Aggregation of surface material classification maps also can be used to generate more homogeneous 
classification maps for use in information fusion with other cartographic feature extraction systems. Figure 9 
compares the original maximum likelihood classification results against both an aggregated surface material 
classification map and manually generated reference data. Visual inspection of the results indicates that 
aggregation removes many of the small, mixed pixel regions from classification results. Percentage accuracy 
of the classification results also improves. Original classification results have a 65.1 percent accuracy with 
respect to the reference data, while the aggregation classification map has an accuracy of 67.5 percent. 



(b) Surface material map with 
120 irr aggregation. 

(c) Surface material map with 
800 m2 aggregation. 

(a) Original maximum 
likelihood classification 
results. 

Figure 7: Aggregation of surface material classification map in CHAFFEE. 

Figure 8: Surface material attribution in a visualization database using an aggregated classification map. 

7.    Data fusion 

The common theme throughout our research has been the belief that no single computer vision technique 
can reliably provide a complete scene reconstruction; thus, to achieve good performance, we need to gather 
a variety of information, extracted by various processes from multiple images of the area of interest, and 
synthesize this disparate information into a consistent model. This is the cooperative methods approach to 
cartographic feature extraction. 



(a) Reference Data for RADI'5 
test scene. 

(b) Original maximum 
likelihood classification map. 

(c) Maximum likelihood 
classification map with 120 
nr 

Figure 9: Aggregation of surface material classification map in RADT5. 

This leads to the central question: How can we intelligently combine and integrate the different sources 
of partial information, generated by our feature extraction systems, to facilitate 3-D scene analysis? We 
seek to improve overall performance both in terms of better quality and faster processing. 

There are alternative ways for organizing the 3-D scene reconstruction threads into a combined processing 
approach. The most basic division is either into a bottom-up (data directed) approach, where the results 
from the different methods are merged together; or. a top-down (knowledge-directed) approach, where the 
partial or full results from one source are used to guide or select the processing of other approaches. 

We have used both approaches in our research and sometimes combine them in order to maximize the 
use of the information available from the different systems. This section discusses the individual feature 
extraction systems and gives examples of the application of fusion techniques to building extraction, surface 
material classification, and road network extraction. 

7.1    Feature extraction systems 

In this section, we briefly describe the cartographic feature extraction systems that serve as the basis for our 
experiments in data fusion. We extract four kinds of features for data fusion: 

• Surface material maps obtained from the classification of hyperspectral imagery (discussed in Section 4), 
• Digital elevation models derived from stereo panchromatic imagery, 
• 3-D building hypotheses generated from single panchromatic images, and 
• Road network hypotheses. 

7.1.1    Building Extraction Using PIVOT 

Perspective Interpretation of Vanishing points for Objects in Three dimensions (PIVOT) is a data-driven 
fully automated monocular building extraction system developed at the Digital Mapping Laboratory 
[Shufelt, 1996]. PIVOT is based on two key ideas: first, that photogrammetric knowledge can be exploited 
at all phases of the building extraction process to improve performance; and second, that buildings can be 
well modeled by composition of a small set of volumetric primitives. 

The inputs to PIVOT consist of a panchromatic aerial image, the interior and exterior orientation, and the 
date and time of image acquisition. From these inputs, PIVOT produces 3-D wireframe representations of 
the buildings in the image, referenced to geodetic coordinates. PIVOT makes use of the photogrammetric 



camera model to detect vanishing points for the image that correspond to the shapes of the primitive 
volumes to be extracted. 

One consequence of this vanishing point-based approach is that the performance of PIVOT depends 
heavily on the quality of the underlying edge data. This dependence on edge data for feature extraction is 
not unique to PIVOT; many current building extraction systems rely on clean edge data to extract structure. 

7.1.2    Stereo Elevation Determination 

IdLDPCP is a stereo system that can operate either fully- or semi-automatically and generates an object- 
space elevation estimate from two or more images of a scene. The Digital Photogrammetry Compilation 
Package (DPCP) stereo matcher was developed at the U.S. Army Topographic Engineering Center 
[Norvelle, 1981; Norvelle, 1992] and the interface and application of the stereo matcher was developed at 
the Digital Mapping Laboratory [McKeown et al., 1997]. 

The input to IdLDPCP is two or more panchromatic aerial images covering a common area along with 
the interior and exterior orientation data for each image. From these inputs, Idl_DPCP produces an elevation 
map in object-space for the scene. IdlJDPCP requires no parameter adjustment or threshold tuning, nor 
does it require any additional image adjustment. All of these are performed automatically by the system. 

If multiple stereo pairs are available, then multiple individual image pyramids are built from coarse to fine 
where, at each level, the current best elevation estimate is shared amongst all of the stereo pairs for use in 
the next level of the pyramid match. This provides a significant improvement in accuracy in the final result 
by removing most of the stereo "blunders" and by decreasing the effects of biasing that might be present on 
a single stereo pair. 

7.2    Improving Building Extraction Performance by Data Fusion 

As noted in Section 7.1.1, many building extraction systems are data-driven, beginning with an edge 
extraction process to supply low-level geometry for the inference of building structure. One of the key 
difficulties such systems face is focusing their processing on edges and lines that correspond to actual 
building structure. In this section, we explore two similar approaches to use multisource data fusion to 
focus edge processing. 

Both approaches share the same underlying technique. The line segments produced by edge extraction 
on a single panchromatic image are filtered through "regions of interest" (ROIs), areas in the image that are 
believed to have a high probability of containing building structure. Line segments which do not come into 
contact with any ROI are discarded, and no further analysis is performed on these segments. The remaining 
line segments are then processed by PIVOT to extract building structure. 

The first approach, stereo-based ROI, uses a dense elevation map generated from multiple panchromatic 
images as the data for determining ROIs (Section 7.1.2).  These are generated by projecting both the 
high-resolution stereo elevation results and the low-resolution DEM from object-space to the desired 
image-space coordinates. Once both sets of elevation information have been projected, they are differenced 
(to remove low spatial frequency ground elevation) and the contiguous areas with an average differential 
height of more than 2-meter are designated building hypotheses (differencing after the projection takes care 
of occluding edges generated by the building). The resultant set of areas includes buildings, trees, and 
very large vehicles, but serves to dramatically reduce the search space for buildings, especially through 
walkways and across parking lots. These initial hypotheses are then morphologically expanded by five 
pixels to allow for stereo "blunders" and for shrinkage due to the elevation threshold; regions of less than 
600-m2 are excluded. 

The second approach, classification-based ROI, uses a material classification map generated from 
multispectral imagery as the basis for generating ROIs. In this approach, ROIs consist of those collections 
of pixels with classifications corresponding to building roof materials. In addition, since PIVOT analyzes 
shadow geometry to infer 3-D structure, pixels assigned to the shadow class also are included as ROIs to 
allow edges formed by shadows to pass through to PIVOT. 
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In our experiments we have used weak edge filtering with ROIs which allows an edge to pass if it comes 
into contact with an ROI. An alternate method, strict edge filtering, only allows an edge to pass if it is 
contained entirely within an ROI. This method is not used because it is less robust than weak filtering; if 
ROIs do not completely cover a building, then edges that fall in the gaps of an ROI will be discarded under 
strict edge filtering, even though they may delineate the underlying building structure. Of course, weak 
edge filtering can allow extraneous edges to pass, but this is a better alternative for data-driven bottom-up 
analysis systems such as PIVOT, which require some minimal amount of boundary information to infer 
structure, and typically employs a hypothesis verification step to reject spurious building models. 

Figure 10 shows an aerial image (RADT9) of a set of barracks in Fort Hood, with the results of edge 
extraction superimposed on the image. Figure 11 shows the resulting building hypotheses generated by 
PIVOT. While some buildings are properly delineated, many false positives are generated by edges that 
have geometric structure consistent with buildings, even though these edges lie along road and parking lot 
boundaries. 

Applying the stereo-based ROI method to an elevation map for the Fort Hood scene produces the ROIs 
shown in Figure 12, with the filtered edges superimposed on the ROIs. Comparing Figure 12 with Figure 10, 
note that a significant number of edges have been discarded because they do not come into contact with the 
stereo-based ROIs; in other words, they do not correspond to height discontinuities in the scene. Of course, 
other tall features in the scene also can generate ROIs and filter edges; many of the edges in the lower right 
corner of Figure 12 are caused by large trucks in the parking lot. 

Figure 13 shows the classification-based ROIs resulting from the classification of test area RADT9 
(Figure 4), again with the filtered edges superimposed on the ROIs. Figure 14 shows the color coding used 
for the surface materials in the classmap. Again, comparing Figure 13 with Figure 10, many edges have 
been discarded because they do not touch regions with a roof material or shadow class. Edge filtering with 
these ROIs is not as effective as in the stereo-based ROI case, since there are many isolated pixels with a 
roof material class that comes into contact with edges. 

Figures 15 and 16 show the final PIVOT results using stereo-based and classification-based ROIs, 
respectively. These compare favorably with the original PrVOT result in Figure 11, in terms of significantly 
fewer false positive building hypotheses, and in some cases, more accurate building delineations; 
these results illustrate the strengths of the ROI approach to fusion. To accurately assess performance 
improvements, however, it is critical to employ a quantitative comparative analysis of PIVOT with and 
without ROI fusion. 

7.3    Improving Material Classification Performance by Data Fusion 

In the previous section, information derived from multispectral classification served as a mechanism for 
improving the performance of building extraction systems for monocular panchromatic imagery.  It is 
natural to ask whether the converse is true: can models extracted automatically from panchromatic imagery 
be used to refine and improve a classmap derived from multispectral imagery? 

One simple approach for using the building polygons generated by PIVOT projects them into the 
H YDICE image space, selects a representative class for each building polygon, and replaces the class values 
inside each polygon with its representative class. The basic idea is that the building polygons define regions 
that have homogeneous surface material composition, and any misclassified pixels within these regions can 
be corrected by assigning all pixels in the region to an appropriate class. More generally speaking, geometry 
derived from panchromatic imagery is used to refine classification in multispectral imagery. 

Such an approach must handle two kinds of issues: registration issues, which arise due to the limits 
of projection accuracy of the camera models across different sensor platforms, and classification issues, 
involving the choice of methods for selecting an appropriate representative material for each building 
polygon. The simplest approach for handling these issues is to project building polygons through the sensor 
models directly to the HYDICE imagery without any corrections, and assign each projected polygon the 
most frequently occurring class inside its perimeter. 
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Figure 10: Fort Hood RADT9 test image with 
extracted edges. 

Figure 11: PIVOT result for RADT9. 
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Figure 12: Stereo-based ROIs derived from 
elevation map. 

Figure 13: Classification-based ROIs derived from 
classmap. 
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Figure 14: Legend for surface material classifications. 
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Figure 15: PIVOT results using stereo-based ROI 
fusion. 

Figure 16: PIVOT results using classification- 
based ROI fusion. 

In the following figures, we use PIVOT with stereo-based ROI to provide building models. Figure 17 
shows the result of projecting the models directly to the HYDICE coordinate system; the barracks buildings 
in the center of the image do not line up with the underlying classification results due to projection error in 
the sensor model. Some building roofs even overlap shadow and grass classes. 

To address these issues, we present new methods for handling the registration and classification problems. 
Rather than use the final classmap directly, we instead use the discriminant values calculated from a GML 
classifier, which can be treated as weighted distances from a pixel to a class representative in spectral feature 
space. 

The first step is to address the registration problem. After a building polygon and its shadow are projected 
into the HYDICE imagery, these are shifted vertically and horizontally within a larger window, bounded by 
the maximum expected projection error, to find the 
best position. This is determined by a least-squares 
solution that minimizes the discriminant distance 
between the roof polygons and the roof material 
class representatives, and the discriminant distance 
between the shadow polygon and the shadow class 
representative. This approach models the registration 
error as a translation in HYDICE image space. 

Figure 18 shows the results of applying the new 
registration method. In comparison with Figure 17, 
the barracks buildings now generally line up well 
with the underlying regions in the classmap. One 
exception is the L-shaped building at the top center 
of the image, for which one wing of the building has 
been incorrectly translated to the right. This approach 
still depends, albeit less directly, on the quality of 
the class representatives, since these determine the 
discriminant distances used for the least-squares 
fit.  Figure 19 shows the results of choosing the R        1?. Initial      jection of PIV0T models t0 

maximally occurring class tor each of these shifted Hnssimn 
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polygons. Note that the class attributions for the building models are now significantly better, due to the 
improved registration; some buildings, however, still have incorrect roof material assignments. 

To improve the material assignment, we again make use of the discriminant values. Rather than choose 
the maximally occurring class in a polygon, we instead select the class that has the minimum mean 
discriminant distance from the pixels in the polygon, limiting the selection to roof material classes. These 
conditions ensure that we not only select a legal roof class, but that we also select the roof class with the 
best overall fit to the region defined by the polygon. 

Figure 20 shows the same projection result as in Figure 18; the difference is in the coloring inside each 
polygon, which is now determined by the minimum mean class discriminant for each polygon. Figure 21 
shows the final result: compared with Figure 19, several buildings have had their roof materials modified. 

In this last example, two kinds of fusion have taken place. In addition to automatically assigning surface 
material attribution to the roof polygons of building models (Figure 21), the classmap itself has been 
refined by assigning the interior pixels of each building polygon with a homogeneous class, determined by 
discriminant analysis. 

8.   Road Network Extraction and Attribution Using HYDICE 
Hyperspectral image data and derived surface material maps can provide powerful cues to road network 
extraction systems. This section presents the results of using feature extraction techniques on HYDICE 
image data and derived surface material maps and also a novel use of surface material maps to refine USGS 
Digital Line Graph (DLG) map data. 

8.1 Road network extraction 

In addition to attribution, surface material information can be used to provide clues for detection of road 
features. This information can be especially helpful in cluttered areas, such as suburban housing areas 
where the roads may be obscured by vegetation and/or shadows. We present some initial experimental 
results applying our road network extraction systems to HYDICE and HYDICE-derived image data. 

Given a surface material classification of the scene, we segment the scene based on the classification 
results, then extract those regions that have surface material types relevant to the road features that we want 
to delineate, e.g., asphalt, gravel, and concrete. After simplification and smoothing, these regions can be 
used to generate segments by doing thinning and connected component extraction. Widths can be assigned 
by overlaying each segment on the surface material map and, for each point, calculating the width of the 
corresponding region in the surface material map. We then extend these segments with our composable 
road tracker [McKeown et al, 1998] using the original HYDICE image data as input to the tracker. Finally, 
we generalize the tracked roads, bridge gaps, then turn the vectors into a road network. 

8.2 Automated road network attribution 

Although the specification supports it, few Digital Line Graph (DLG) transportation data sets have width or 
surface material attributions. Using surface material maps generated from HYDICE classifications, we can 
augment an existing DLG road network with detailed width and surface material information. 

We begin by projecting and clipping the DLG data into the desired image space. We then guess a width 
for each road segment. This can be done very approximately by assigning all the roads the same "average" 
width, or by running an automated road finder on the surface material map and matching the various road 
seeds to portions of the DLG road network. Next, we deal with any registration errors by matching the 
road network to the surface material map by using a discriminant optimization technique [Ford et al., 
1999]. In order to do this accurately for roads, we preprocess the network by creating polygons around 
each intersection. This step is necessary because roads tend to be symmetric objects; the intersection 
polygons will tend to be asymmetric and, therefore, match more uniquely. This registration refinement step 
yields a set of translations for each intersection polygon that then must be propagated back to other points 
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Figure 18: Translation of building polygons using       Figure 19: Surface material assignment after 
discriminant analysis. translation. 

Figure 20: Refined classmap using discriminant 
analysis. 

Figure 21: Final results for surface material 
assignment. 
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(a) Automatically generated road network extracted using HYDICE derived surface material classification. 

(b) Reprojected DLG road network (blue) and automatically adjusted DLG road network with width and 
surface material attributes derived from HYDICE surface material classification (yellow). 

Figure 22: Road network extracted using the surface material classification generated from the HYDICE 
data. 

comprising the DLG road network. Once translated, we overlay the road network on the surface material 
map and compute a width for each of the road points. Surface material attributions also can be generated 
at this time. We can now generate full road models using the translated DLG centerlines and the computed 
width information. The registration refinement and width attribution steps are repeated again to ensure that 
the placement of the network is accurate given the improved width assignments. 

Figure 22(b) shows a road network that has been adjusted using the process previously described. The 
new network seems to be better positioned on the image, and the computed width attributions appear to 
be close. Most problems are mismatches that can occur where there is more than one compatible surface 
material region that can be matched to the road, or when the match window is too small to allow the correct 
match to occur. 

9.    Conclusions 
Our work under the APGD program has shown the applicability and suitability of hyperspectral data for 
surface material classification as input for visual simulation databases and land cover studies. In particular, 
it has been shown to be especially effective as a component for fusion-based cartographic feature extraction, 
in conjunction with stereo elevation or building and road extraction systems. 
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